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SUMMARY

This paper examines the performance of optimal linear quadratic state and output feedback controllers in
stabilizing two-dimensional perturbations in a plane Poiseuille flow. The synthesis of the controllers is
based on a linearized model of the flow using a new set of interpolating polynomials in the wall-normal
direction, which automatically satisfy the homogeneous Dirichlet and Neumann boundary conditions at
the walls and eliminate spurious eigenvalues. The controllers are implemented into a non-linear Navier–
Stokes solver, which is modified to compute the evolution of the flow perturbations. Two cases are
examined, one with small initial disturbances that do not violate the linearity assumptions and the other
with much larger disturbances that trigger the non-linear convection terms. For the smallest disturbances,
the solver accurately reproduced the results of the linear simulations of open- and closed-loop systems.
The simulations for the larger disturbances without control showed a rapid initial growth but the flow
soon reached a saturated state in agreement with previous findings in the literature. The large initial
growth is a consequence of the non-normal nature of the system dynamics. The state feedback and output
feedback controllers were able to reduce significantly the perturbation energy. For the larger disturbances,
the energy calculated from the state variables is well below the energy evaluated by direct integration of
the velocity field. This is probably due to the non-linear terms transferring energy to harmonics of the
considered wavenumber, which are not sensed by the linear controller. Copyright q 2008 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

It is well known that laminar and turbulent flows have entirely different characteristics. In laminar
flow the velocity field is smooth, whereas in turbulent flow it fluctuates chaotically, leading to
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strong mixing between adjacent fluid layers. The enhanced mixing results in large increases in
fluid drag and therefore if transition to turbulence is suppressed, substantial savings in the energy
required to sustain the flow can be obtained.

The process of transition begins with the rapid growth of small disturbances in laminar flow.
One of the most widely studied flows in this respect is the one between parallel flat plates (also
known as plane Poiseuille flow). This flow is linearly unstable for Reynolds numbers above 5772
[1]. However, experiments show that it undergoes transition to turbulence for Reynolds number as
low as 1000, for example, as shown in [2]. This is due to the fact that, although the perturbed flow
is linearly stable, the transient perturbation energy can reach values high enough that can trigger
three-dimensional non-linearities that will eventually lead to transition and turbulence. Therefore,
measures of the maximum perturbation energy are of interest. For a linearized system, the largest
perturbation energy can be evaluated for all possible unit energy initial disturbances, and the
maximum over all time gives the maximum transient perturbation energy [3–5].

Linear systems theory provides a very effective tool for control of non-linear problems, such
as the Navier–Stokes equations, as explained in a recent review [6]. This opens the possibility
of using standard modern control theory (e.g. [7, 8]) to develop controllers that can stabilize the
flow. It has been shown that linearized systems do represent some important dynamic processes of
turbulent flows. For example, in [9] a coupling term is identified in the linearized Navier–Stokes
equations without which near wall turbulence is shown to decay (other references are provided in
[6]). There are various ways of sensing the state of the flow (for example, through measurement
of shear stresses or pressure) and influencing the flow (for example, through suction and blowing
at the walls). Linear models are often based on spectral analysis of the linearized equations as
performed, for example, in [4, 10, 11].

In this context, the purpose of the present paper is to examine the performance of optimal
linear quadratic state and output feedback controllers in stabilizing two-dimensional perturbations
in a plane Poiseuille flow. The state-space model assumes streamwise periodicity at a single
wavenumber in flow, measurement and control variables, and employs a novel polynomial wall-
normal basis that produces a system free of spurious eigenmodes and leads to control via the
rate of change of wall-normal transpiration velocity. In addition, the synthesized controllers are
subsequently tested in a full model of the flow using a non-linear Navier–Stokes solver, which
is completely independent of the development model. The performance of the linearly designed
controllers is also examined for finite-amplitude perturbations that trigger non-linearities. In order
to keep the simulation times relatively small, the flow examined is two dimensional.

A few other investigators have examined the state of the flow between parallel plates when
initially infinitesimally small perturbations grow and trigger the non-linear convection terms.
Two-dimensional simulations are reported in [12] that extend the linear stability curve to neutral
finite-amplitude states. The authors found that for a Reynolds number below 2827 any single
mode disturbance to the parabolic profile in the streamwise direction dies away. For Reynolds
number and wavenumbers for which the linear theory predicts instability, an initial disturbance of
any amplitude eventually saturates to a single finite-amplitude solution. For Reynolds greater than
2827, but outside the linear instability region, a ‘subcritical instability’ with two steady solution
branches occurs for wavenumbers in a given band. The solution branch with the smallest amplitude
is known to be unstable for two-dimensional disturbances, whereas the other one is, at least for
moderate Reynolds numbers, not only stable but also attracting. Both branches are known to be
unstable for three-dimensional perturbations [13]. More detailed two-dimensional simulations have
also been performed by Jimenez [14, 15] who investigated the flow dynamics of the upper branch.
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He found that for certain combinations of Reynolds and wavenumbers the steady flow branch
bifurcates into one-frequency limit cycles or two-frequency tori. Three-dimensional computations
are reported in [16].

The paper is organized as follows: Section 2 briefly introduces the linear and non-linear pertur-
bation equations and the selected formulation. It also presents the modified Chebyshev polynomials
that are used for the wall-normal discretization. Section 3 describes the synthesis of optimal state
feedback controllers and optimal state estimators. Section 4 details implementation issues of the
controllers to a full Navier–Stokes finite volume code. Section 5 presents results from linear and
non-linear simulations with smaller and larger initial disturbances, respectively, around a laminar
(parabolic) velocity profile. In the simulations, the open-loop (OL) system comprises the plant
model with an optimal linear quadratic estimator (LQE). The closed-loop systems comprise the
plant model either with a state feedback linear quadratic regulator (LQR) or with a output feedback
linear quadratic Gaussian (LQG) control. Finally the last section draws conclusions regarding the
performance of controllers and estimator.

2. FLOW EQUATIONS AND STATE-SPACE REPRESENTATION

2.1. Linear and non-linear perturbation equations

The flow of an incompressible Newtonian fluid is described by the Navier–Stokes and conti-
nuity equations. This set of equations describes both a base flow (Ub=(Ub,Vb,Wb), Pb) and any
perturbed state ((Ub+u,Vb+v,Wb+w), Pb+ p) of the base flow. The evolution equations of the
disturbances, which are derived by subtracting the equations of the base state from those of the
perturbed state, are shown below:

�u
�t

+(u·∇)u+(Ub ·∇)u+(u·∇)Ub=−1

�
∇ p+ �

�
∇2u (1)

∇ ·u=0 (2)

where � is the dynamic viscosity and � the density of the fluid. In order to derive a linear state-space
representation of the form Ẋ=AX+BU required for the application of modern control theory
(X being the state variables and U the inputs), this set of equations must be linearized around the
base flow. In this paper the laminar flow between parallel flat plates, with x being the streamwise
direction, y the wall-normal direction and z the spanwise direction, is considered to be the base
flow. In non-dimensional values the upper and lower walls are located in y=1 and −1, respectively,
and the velocity vector is Ub=(1− y2,0,0). The channel half-height h and the centreline velocity
Ucl are the reference quantities, respectively, for the non-dimensionalization.

The continuity perturbation equation is already linear. The perturbation Navier–Stokes equations
can be linearized by discarding the second-order quantity (u·∇)u, which is small compared with
the underlined terms (Ub ·∇)u+(u·∇)Ub when u�Ub, resulting in the following set:

�u
�t

+(Ub ·∇)u+(u·∇)Ub=−1

�
∇ p+ �

�
∇2u (3)

∇ ·u=0 (4)
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Although the system is linear, it still cannot be used to derive a state-space model of the
required form. The reason is that although the discretized form of this system can be put in the
form LẊ=AX+BU, matrix L is singular and cannot be inverted. This singularity stems from
the fact that for incompressible flows pressure does not appear as an unknown variable in the
continuity equation. In order to proceed, system (3), (4) must be reformulated in such a way that
the continuity constraint is implicitly enforced. There are several possible formulations such as
vorticity–stream function, velocity–vorticity, etc. as described in [17]. The current study employs
a velocity–vorticity formulation as it is convenient for the application of boundary conditions in
the examined geometry.

2.2. Velocity–vorticity formulation

Using the continuity equation (4), the pressure perturbation can be eliminated from the linearized
equations (3) to yield an equation for the wall-normal velocity:

(
�
�t

)(
�2v
�x2

+ �2v
�y2

)
+Ub

(
�
�x

)(
�2v
�x2

+ �2v
�y2

)
− �2Ub

�y2
�v

�x
− 1

R

(
�4v
�x4

+ �4v
�y4

)
=0 (5)

where Ub=1− y2 and R is the Reynolds number (defined as R=�Uclh/� with h being the
half-height of the channel). This fourth-order partial differential equation suffices to describe the
two-dimensional perturbations considered in this paper. A second equation, in vorticity, is required
to completely describe a three-dimensional perturbation.

This equation is supplemented with the boundary conditions. At the walls, the velocity pertur-
bation, v(y=±1), is zero and due to continuity equation, the y derivative of v is also zero. These
are four boundary conditions for the fourth-order equation thus forming a well-posed mathematical
problem.

A spectral method is employed for the discretization of this equation. The variation in the x
direction is assumed to be periodic and is approximated by a truncated Fourier series expansion.
The linearized equations decouple by wavenumber and thus it is possible to treat each number
separately. Therefore for the wavenumber � we have

v(x, y, t)=Re(ṽ(y, t)ei�x ) (6)

where ṽ(y, t) is the Fourier coefficient of the wall-normal velocity perturbation, or simply the
velocity coefficient. This is a complex number and conveys the wall-normal (y) and temporal (t)
variation of v at the streamwise wavenumber �. Substituting the assumed solution (6) into
Equation (5) we get

(
−Ub�

2− �2Ub

�y2
− �3

iR

)
ṽ+

(
Ub+ 2�

iR

)
�2ṽ
�y2

−
(

1

iR�

)
�4ṽ
�y4

= i

�

(
�3ṽ

�y2�t
−�2

�ṽ

�t

)
(7)

The boundary conditions for ṽ(y) are identical to those for v, i.e. the value and the first-order
derivative with respect to y at the walls are both equal to 0. If an exponential time variation is
assumed, the classical Orr–Sommerfeld equation is derived.
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2.3. Discretization in the wall-normal direction

In the wall-normal direction ṽ(y) is approximated by polynomials �n

ṽ(y, t)=
N∑

n=1
an(t)�n(y) (8)

where an(t) are unknown spectral coefficients. Substitution of series (8) into velocity equation
(7) yields a system of first-order ordinary differential equations for the spectral coefficients an(t).
The polynomials �n are usually the standard Chebyshev polynomials. This set, however, results
in spurious eigenvalues as four equations next to the walls (two from the top and two from the
bottom) must be discarded and replaced by algebraic ones that represent the required Dirichlet
and Neumann conditions. More details about their origin in generalized eigenvalue problems in
non-periodic geometries due to the misapplication of boundary conditions are provided in [18].
Inclusion of spurious eigenvalues in the system matrix A can cause problems when applying
control theory and therefore they have to be identified and moved to highly damped areas. This
can be done by a suitable choice of the algebraic coefficients [19].

In this paper, a different approach is followed. A set of modified Chebyshev polynomials that
individually satisfy the Dirichlet as well as the Neumann boundary conditions at the wall is used.
This guarantees that ṽ(y) will automatically satisfy these conditions as well and therefore no
modifications are required close to the walls. The following modified Chebyshev polynomials are
used as basis functions in the present paper:

�n,odd=(�n+4−�1)− (n+3)2(�n+2−�1)

(n+1)2
(9)

�n,even=(�n+4−�2)− ((n+3)2−1)(�n+2−�2)

(n+1)2−1
(10)

where �n(y) are the standard Chebyshev polynomials. It is reminded that �1=1 and �2=y.
It can be easily seen that since for n>2, �n(±1)=(±1)n−1 [20, p. 159] (and therefore
�n,odd(±1)=�1(±1) and �n,even(±1)=�2(±1)), this recombination satisfies the homogeneous
Dirichlet boundary condition, i.e.

�n(±1)=0 (11)

In addition, since �′
1(±1)=0 and �′

n>1(±1)=(±1)n−2(n−1)2 (see again [20, p. 159]), it can
be easily verified upon substitution that it also satisfies the homogeneous Neumann boundary
condition, i.e.

�′
n(±1)=0 (12)

This set of modified polynomials is believed to be new and to the best of the authors’ knowledge
has not been used before for the wall-normal discretization. They eliminate spurious eigenvalues
and have good stability characteristics as shown in [21].
2.4. State-space representation

In order to derive the state-space form, Equation (8) is substituted into (7) and the resulting
expression is evaluated at the Gauss–Lobatto collocation points. The state variables are simply
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the spectral coefficients an , which multiply the modified Chebyshev polynomials. Although this
choice is less intuitive than the collocation point values, the number of spectral coefficients can
be easily reduced when required due to the fast convergence of Chebyshev series.

The control variables in the present study are related to the rate of change of transpiration, i.e. the
wall-normal velocity perturbation on the upper and lower walls, q̃u = ṽ(y=1) and q̃l = ṽ(y=−1).
As these are Fourier coefficients, physically they correspond to sinusoidal streamwise distribution
of transpiration velocity at the selected wavenumber. Since the distributions are sinusoidal, zero-net
mass transpiration is automatically enforced. The introduction of wall transpiration makes the v

velocities non-zero at the wall but a new variable can be defined and substituted whose boundary
value is zero and so the polynomials presented earlier can still be used [22].

The state-space model requires fluid flow measurements, and the least intrusive at reasonable
cost are those of wall shear stresses. Thus, the measurement variables in the present study are the
Fourier coefficients of the wall shear stress on the upper and lower walls.

There are no numerical problems in having the sensing of shear, 1/R�u/�y, and actuation,
by setting �v/�t , collocated on the walls. The actuation affects the measurement via the system
dynamics, which are derived from the Navier–Stokes and continuity equations. Physical collocation
is of course not possible but might be approximated by the use of micro-electronic devices.

Further details on the introduction of wall transpiration, the expression of the wall shear stress in
terms of the state variables and the final expression of the state-space form are provided in [21, 22].
The synthesis of the controllers for this linear system is presented in the following section.

3. CONTROLLER SYNTHESIS

3.1. Optimal state feedback

The standard LQR control problem states that given the open loop (OL) system or ‘plant’

Ẋ = AX+BU

Y = CX
(13)

where Y are the outputs (in the present case the measurements of the wall shear stress), the
feedback control signal that minimizes the functional∫ ∞

0
(X(t)TQX(t)+U(t)TRU(t))dt (14)

where Q=QT�0 and R=RT>0 are weighting matrices, is given by U=−KX where K=
R−1BTP and P=PT�0 is the solution of the algebraic Riccati equation

ATP+PA−PBR−1BTP+Q=0 (15)

Figure 1 shows a block diagram of LQR state feedback. A natural choice for matrix Q is such that
XTQX equals the transient energy density E (i.e. energy per unit volume), defined as

E= 1

V

∫
V

�
uTu
2

dvol (16)
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Figure 1. A block diagram of LQR state feedback.

where u is the perturbation velocity vector. The analytic expressions for the elements of matrix Q
are provided in [21].

Matrix R is set as R=r2I, where I is the identity matrix. In practice, r quantifies the ‘price’
of the control. A large value of r results in small values of the control variables (i.e. ‘expensive’
control), whereas small values tend to result in larger control magnitude and smaller transient
energy density (see [23] for more details). A value of r =0.25 is selected for all the calculations.

3.2. Optimal estimation

The standard LQE problem assumes that the system has disturbance and measurement noise input
processes wd and wn, respectively,

Ẋ = AX+BU+wd

Y = CX+wn
(17)

and that the noise inputs are uncorrelated, zero-mean, Gaussian stochastic processes with constant
power spectral density matrices V and W [8, p. 353]. The theory states that for an LQE state
estimator

˙̂
X=AX̂+BU+L(Y−CX̂) (18)

where X̂ are the estimated state variables, the optimal estimator gain L that minimizes

Exp{[X̂−X]T[X̂−X]} (19)

(Exp being the expectation operator) is given by L=PCTV−1 where P=PT�0 is the solution
of the algebraic Riccati equation

PAT+AP−PCTV−1CP+W=0 (20)

This equation is solved using the MATLAB Robust Control Toolbox aresolv function. The
statistical properties of the noise inputs on the present system are unknown, and matrices V and
W can be treated as parameters that can be tuned in order to achieve an estimator of acceptable
performance. Details about the selection of the V and W are provided in [23].
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Figure 2. A block diagram of LQG output feedback.

3.3. Optimal output feedback

The combined plant, LQR controller and LQE estimator may be combined into an LQG output
feedback system, with dynamics

⎡
⎣Ẋ˙̂
X

⎤
⎦=

[
A −BK

LC A−BK−LC

][
X

X̂

]
+
[
I 0

0 L

][
�d

�n

]
(21)

where the estimate and state dynamics are not independent but are intentionally coupled. Figure 2
shows a block diagram of LQG output feedback.

The state-space model is coded in MATLAB. Detailed linear simulations are performed for
the OL, state feedback and output feedback systems, from the worst initial conditions, using the
MATLAB function lsim. These conditions are calculated as described in [4] following [3]. Non-
linear simulations are performed using a Navier–Stokes solver, which is appropriately modified as
explained in the following section.

4. IMPLEMENTATION TO A NON-LINEAR NAVIER–STOKES SOLVER

4.1. Solution of the non-linear perturbation equations

The code in which the aforementioned controllers are implemented solves the full non-linear
Navier–Stokes equations using the finite volume discretization method and it is completely inde-
pendent of the MATLAB spectral code used for the controller synthesis and linear simulations.
The solver employs an unstructured, collocated grid capable of representing complex geometries.
A second-order central differencing scheme is used to discretize the spatial terms and a second-
order Euler 3-point implicit scheme is used for time marching. The PISO algorithm is used to
handle pressure–velocity coupling.

Early simulations showed that if the algorithm solves for the total velocity components, i.e.
U=Ub+u, then excessively fine meshes are required in order to get close agreement between
the linear and non-linear results for very small perturbations. The origin of this discrepancy was
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traced to the discretization errors that contaminate the numerical solution of the base flow Ub.
These errors can be of the same order of magnitude as u and must be minimized in order to be
able to study the evolution of the perturbations, thus the need for very fine meshes.

In order to solve the problem, the existing CFD code is modified to solve the system of the non-
linear perturbation equations (1), (2), which contain exactly the same information as the standard
Navier–Stokes equations. For the base flow velocity that appears explicitly the analytic solution
Ub=(1− y2,0,0) is directly employed. The difference between the standard and the perturbation
Navier–Stokes equations are the two underlined terms in (1). The first term (Ub ·∇)u is treated as
a convection term, i.e. the velocity Ub is added directly to convection velocities at the faces of
each control volume, whereas the second term (u·∇)Ub is moved to the right-hand side and is
treated as a source term. The continuity equations for the total velocities U and for perturbation
velocities u are identical; hence, no modification was necessary. Clearly from the solution of this
set of partial differential equations, the perturbation velocity and pressure fields are obtained.

The boundary conditions are cyclic with constant mass flow rate in the streamwise direction and
symmetric in the spanwise direction. The streamwise cyclic boundary conditions and domain length
2�/� enforce periodic flow behaviour at wavenumber �. The standard wall boundary conditions
are modified to simulate wall transpiration by imposing the wall-normal velocity calculated by the
controller. In order to keep the mass flow rate constant a special pressure correction procedure is
implemented. This constant flow rate and associated momentum are used for the normalization of
the residuals of the discretized equations.

The meshes employed are structured and nominally two dimensional, the third dimension being
only one cell thick, and they are generated by a short Fortran program. One of the meshes employed
is shown in Figure 3. It covers one streamwise period, x=0−2�, with 27=128 uniform cells,
an appropriate number for fast Fourier transform and contains 100 cells in the y (wall-normal)
direction. The y coordinates of the cell centroids coincide with the Gauss–Lobatto points, thus

0

1

2

3

4

5

6

−1

−0.5

0

0.5

1

x (streamwise)

Figure 3. Isometric view of one of the finite volume meshes.
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Figure 4. Contours of u and v perturbation velocities for sinusoidal upper wall transpiration of amplitude
vmax=10−4Ucl(R=500). Linear (dashed line) and non-linear (solid line) results are identical.

producing cell refinement in the near wall region, and also avoiding the need for interpolation onto
the location of the state variables.

The worst initial conditions (see Section 5.2) calculated from the spectral (MATLAB) code are
assigned to the cell centroids and boundary faces.

The solution of the non-linear perturbation equations requires significantly more computing time
than the linear simulations, in the order of days rather than minutes on a Pentium 4TM personal
computer. All calculations are in double precision.

The modified code is validated first for a steady case with imposed constant flow transpiration.
Figure 4 displays the steady u and v perturbation contours from linear and non-linear simulations
for a prescribed sinusoidal transpiration from the upper wall with amplitude 10−4Ucl, where
Ucl is the centreline velocity. The base flow corresponds to Reynolds number of 500 and the
mesh used is the one shown in Figure 3. The perturbations are solely due to the imposed small
amplitude transpiration. The linear solution corresponds to the eigenvector of the zero eigenvalue
that represents the control actuation at the upper wall, transformed from Fourier space to physical
space. It can be seen that the linear and non-linear results are indistinguishable for both u and
v flow fields. Thus, it can be concluded that the boundary conditions have been implemented
correctly into the CFD code and that the code and mesh are capable of accurately modelling
perturbations small enough to be linear.

4.2. Incorporation of the controller into the solver

The controllers described earlier are incorporated in the aforementioned modified Navier–Stokes
code. The controller matrix K, estimator matrices A,B,C,L and the matrices necessary for
calculating the state variables and energy density from the flow field were evaluated using MATLAB
and then imported into the code.

At each time step the code provides a perturbation velocity field. The measured wall shears,
1/R(�u/�y), are calculated using a first-order finite difference approximation, which is accurate
enough as the collocation points are very closely spaced at the walls. Fast Fourier transforms
are then performed in the streamwise direction on the velocity flow fields as well as wall shears.
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DOI: 10.1002/fld



LINEAR AND NON-LINEAR SIMULATIONS OF FEEDBACK CONTROL 917

Pairs of transforms are performed simultaneously using the subroutine TWOFFT from [24, p. 398]
and the Fourier coefficients ṽ(yk) at the streamwise wavenumber � are selected from the results.
The measurement vector is also composed from the results of fast Fourier transforms on the wall
shear stresses.

For state feedback (LQR) the state variables X are then calculated from ṽ(yk) and from these
the transient energy E=XTQX. Estimated state variables X̂ are calculated from the measurement
vector ỹ, and control vector U by integrating (18) using an implicit method [24, p. 575]. The initial
estimated state variables X̂(t=0) are set equal to 0.

For state feedback the control signals ˙̃vu, ˙̃vl are calculated as U=−KX, whereas for output
feedback they are calculated as U=−KX̂. The control signals are integrated to yield ṽu, ṽl using
the initial conditions ṽu(0) and ṽl(0), and the wall transpiration velocities vu,vl are evaluated as

vu(x) = �(ṽue
i�x )

vl(x) = �(ṽle
i�x )

(22)

for the duration of the time step.

5. RESULTS AND DISCUSSION

5.1. The case examined and discretization of the spectral model

The case considered here is two dimensional. The Reynolds number (R=�Uclh/�) is 104 and the
streamwise wavenumber �=1. Accurate eigenvalues for this case are reported in [1]. One of the
eigenvalues is unstable (0.00373967−0.23752649i) and is known as a Tollmien–Schlichting wave
[19]. Since there is no spanwise variation it is assumed that the w velocity is zero.

Before moving onto the results, it is appropriate first to consider the level of discretization of
the spectral model that is used for the controller synthesis. For the LQR controller synthesis to
converge a value of N =30 in Equation (8) is sufficient but the LQE estimator synthesis is more
exacting. For the wall gradients and observability to converge for the first 20 modes N =100
is required. Thus, the major factor in determining the discretization to be used appears to be
the accuracy of the wall gradients in the estimator model of the plant. Accordingly, controllers
synthesized with N =100 are used within the linear and non-linear simulations. Numerical tests
have demonstrated that for N =100 the spectral model can also achieve the high level of accuracy
of eigenvalues reported in the fluid dynamics literature [1].

5.2. Comparison between linear and non-linear simulations for very small initial disturbances

The OL case examined is linearly unstable because there is one unstable eigenvalue, i.e. the
transient energy is expected to rise indefinitely when the linear equations are solved. However,
the rate of rise (at least at the initial stages) depends on the combined effect of the different
eigenmodes. In the present paper, the initial distribution of u and v velocities consists of different
eigenmodes and the contribution of each eigenmode is evaluated so that the transient energy is
maximized at time 700. The calculated value of transient energy E at t=700 is 5396.0 from an
initial unit energy. These initial conditions are found not to vary with the precise time at which E
is maximized.
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In order to assess whether the initial perturbations can be expected to behave linearly, the
magnitude of the non-linear terms (u·∇)u omitted during the linearization process is calculated
for the worst initial conditions that correspond to a maximum v amplitude of 10−4Ucl. The
non-linearity in the y momentum equation quantified by the ratio (u·∇v)/(Ub ·∇v) for OL (i.e.
uncontrolled case) is presented in Figure 5. The regions where this ratio is larger than 10−2

are confined near the walls and in total are less than 10% of the whole channel area. The plot
contours scale directly with perturbation; hence for a 10−2Ucl perturbation, the regions with the
same degree of non-linearity would cover around 45% of the area. The results for x momentum
are similar. Thus, it would appear that a 10−4Ucl initial perturbation would produce significantly
more linear behaviour than a 10−2Ucl one. A 10−4Ucl perturbation has initial transient energy of
8.23×10−8, hereafter denoted by Elinear. The base flow energy density is 4

15 ≈0.2667; thus, Elinear

has approximately 3.1×10−7 of the base flow energy density.
The OL transient energy from this small initial perturbation, for both linear (dotted) and non-

linear (solid) simulations, is exhibited in Figure 6. The results from the linear and non-linear
simulations agree very well, as might be expected from the initial small degree of non-linearity. The
energy increases swiftly at a rate determined by the combined effect of the different eigenmodes
that constitute the worst initial conditions (this is called non-normal growth). When all the stable

x = 0 x = 6.23
y = −1

y = 1

00

00

Figure 5. Contours of the ratio log10 |(u ·∇v)/(Ub ·∇v)| for the y-momentum equation and worst initial
perturbation of amplitude vmax=10−4Ucl.
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Figure 6. Open-loop transient energy E vs time t (initial conditions scaled to energy Elinear).
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Figure 7. LQR transient energy E vs time t (initial conditions scaled to energy Elinear).

eigenmodes have decayed, the non-normal growth is completed and the energy continues to rise
at the slower rate of a single unsteady eigenmode (normal growth). The same figure also shows
the behaviour of the estimator. For good performance the estimated energy must converge with the
plant energy quickly. It can be seen that the estimator cannot capture accurately the initial rapid
non-normal growth but once the slower rate of the unstable eigenvalue is established, the estimator
can capture the correct energy levels quite accurately.

Figure 7 presents the closed-loop LQR state feedback transient energy, from worst initial pertur-
bations of equal energy to OL case, for both linear (solid) and non-linear (dotted) simulations. The
results from both simulations again agree well (although there is a small difference at the peak)
and show the stabilization (relaminarization) of the flow by the LQR controller.

It was mentioned in Section 4.2 that the energy of the system E in the non-linear simula-
tions was evaluated from the states, i.e. E=XTQX. The energy thus computed agrees with the
energy evaluated by direct integration of the velocity field over the mesh (16) to within 0.3%.
This shows that the calculation of the state variables is correct and that the energy matrix Q is
correctly formulated.

The behaviour of the combined LQE estimator and state feedback LQR controller on the plant
from worst initial conditions of energy Elinear is shown in Figure 8. The non-linear simulation
energy estimates again agree well with the linear simulation for both the plant and estimator
transient energy. It is interesting to see that both the linear and non-linear simulations show that
the estimated energy amounts to only a small fraction of the plant energy evaluated from state
variables. Nonetheless the controller is able to stabilize the flow although it results in a larger
energy peak compared to the LQR state feedback controller.

5.3. Comparison between linear and non-linear simulations for larger initial disturbances

Larger perturbations which trigger non-linearities are more difficult to simulate accurately. Accord-
ingly a mesh and time step sensitivity study is performed to assess the appropriate level of
discretization. The study is performed only for an OL simulation which is more demanding, since
closed-loop simulations have lower peak energy levels.
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The initial conditions are the worst for the open loop eigensystem, with energy corresponding to
that of a vmax=10−2Ucl OL worst initial perturbation. This energy is 4 orders of magnitude larger
than Elinear i.e. 104Elinear=0.00082 (approximately 3.1×10−3 of the base flow energy density).

Figure 9 shows the u velocity component at 4 monitoring points at 25% channel height inter-
vals. Two meshes were examined, with N=100 and with 150 cells in the wall-normal direction.
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Figure 8. LQG transient energy E vs time t (initial conditions scaled to energy Elinear).
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Figure 9. Open-loop u at 4 monitoring points for 2 wall-normal discretizations N and time steps �t .
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Figure 10. LQE transient energy E vs time t (initial conditions scaled to energy 104Elinear).

In the streamwise direction the mesh is uniform and has 27=128 cells. The results from the
two meshes are indistinguishable for approximately 20 time units, while later small differences
develop. The results for velocity component v are similar. It can be concluded that reasonable mesh
independence can be achieved with 100 cells in the y direction. All subsequent calculations were
carried out with a 128×100 mesh. Similarly time step independence justifies a non-dimensional
time step �t=0.03.

Figure 10 shows the OL transient energy against time, from this larger initial perturbation,
for both linear and non-linear simulations. Both simulations agree initially for a short period
up to time approximately 10 units. Thereafter the non-linear simulation undergoes an oscillatory
transient, and reaches a saturated state, in which the transient energy grows relatively slowly, the
value at time 150 being 0.0084 and later at 300 being just 0.0122 (not shown). The CFD results
deviate at later times due to the presence of the extra term (u·∇)u which was discarded from
the linear model. The non-linear term couples the equations for different modes, so that energy
can be transferred to them. The non-linear analysis allows for harmonics of the wavenumber �
since, for example, wavenumber 2� (wavelength �/�) can also fit at a streamwise length of 2�/�.
Under these conditions, the mean velocity field is also expected to change and deviate from the
original parabolic profile. The number of harmonics that were actually excited was not investigated.
However, Jimenez [15] who studied the same non-linear two-dimensional flow reported that the
spatial structure of the flow dynamics is rich and needs many Fourier modes for accurate spatial
representation; computations are reported with 83 modes. On the other hand, for the linear system
there is no mechanism to couple the different modes and the equations decouple by wavenumber.

The same figure also presents the OL estimated transient energy against time. The performance
of the linear estimator on the non-linear plant model is poor, achieving a peak energy of only
0.0014 as compared with the plant, which reaches 0.017. The estimator is unable to match the
final slow energy growth of the plant.

Figure 11 shows the final (t=150) spanwise vorticity, �v/�x−�u/�y. This vorticity pattern is
in good agreement with the type of the patterns observed in [15]. The author found that the flow
reaches an asymptotic state that is dominated by large vortices of alternating sign located near the
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Figure 11. Open-loop final spanwise vorticity contours, from initial conditions
XWorst scaled to energy, 104EC1 at t=150.
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Figure 12. LQR transient energy E vs time t (initial conditions scaled to energy 104Elinear).

centre of the channel, which induce strong secondary vorticity peaks near the walls. These vortices
emanate from the walls periodically, one from the top wall and the other from the bottom wall, as
shown in the figure.

The closed-loop LQR transient energy vs time, for both linear and non-linear simulations, is
presented in Figure 12. The controller reduces the transient energy, and thus the difference between
the linear and non-linear simulation is much reduced, as compared with the OL case. The controller
is able to reduce significantly the energy (although it takes significantly longer than in the linear
simulation) but cannot entirely relaminarize the flow, at least until 150 time units.

It is reminded that for very small initial disturbances, the energy density evaluated from the state
variables (i.e. E=XTQX) agreed very closely to the one evaluated from direct integration of the
velocity field over the mesh. For larger perturbations this is not the case. In fact, it was found that
the evaluation using the state variables underestimates the peak value of E from direct integration
by 77%. This is thought to happen because disturbances at harmonics of the wavenumber � are
present in the CFD simulations and energy is transferred to them by non-linear interactions. On
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Figure 13. LQR wall transpiration velocity at x=� vs time t (initial
conditions scaled to energy 104Elinear).
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Figure 14. LQG transient energy E vs time t (initial conditions scaled to energy 104Elinear).

the other hand, the linearly designed controller cannot sense the harmonics and consequently there
is large discrepancy between the two results.

Figure 13 displays the upper wall transpiration velocities at location x=�, the mid point of the
domain in x , for the same perturbation. The wall transpiration velocities required in the non-linear
simulation are lower than in the linear one, but are required for longer, which is consistent with
the transient energy behaviour.

Finally, Figure 14 presents the LQG transient energy vs time. As might be expected, the estimator
performs poorly. Surprisingly the estimates it provides are sufficient for the LQR state feedback
to stabilize the plant, and at a lower peak transient energy than on the linear plant (0.0136), and
only a slightly higher value than the LQR controller achieves on the non-linear plant (0.011).
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6. CONCLUSIONS

The paper has described the synthesis of optimal controllers and estimators for the spectral state-
space model of linearized plane Poiseuille flow, which uses a new modified Chebyshev bases in the
wall normal direction that automatically satisfies the required boundary conditions and eliminates
spurious eigenvalues. An independently derived finite volume Navier–Stokes solver was modified
to compute the evolution of perturbations and was employed for open- and closed-loop non-linear
simulations of the controllers and estimators. The code was able to accurately reproduce the
steady-state transpiration flow field for small transpiration and when supplied with small initial
conditions, it accurately reproduced the results of the linear simulations of the open- and closed-
loop systems. A mesh and time step sensitivity study was performed to ensure that the non-linear
solver produced accurate results from larger initial perturbations, which would trigger significant
non-linearity. Simulations from these initial conditions showed initial growth at the same rate as
the linear simulations (and thus the relevance of linear control) but the flow reached a saturated
state. The state feedback controllers were able to maintain stability and reduced significantly the
transient energy; however, the flow did not fully relaminarize, at least until the maximum examined
time of 150 units. The non-linear flow energy density was greater than that indicated by the state
feedback controller state variables, indicating the probable diversion of energy to harmonics of the
considered wavenumber.
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